Atmospheric deposition on Swiss Long-Term Forest Ecosystem Research (LWF) plots.
نویسندگان
چکیده
Atmospheric deposition of the major elements was estimated from throughfall and bulk deposition measurements on 13 plots of the Swiss Long-Term Forest Ecosystem Research (LWF) between 1995 and 2001. Independent estimates of the wet and dry deposition of nitrogen (N) and sulfur (S) on these same plots were gained from combined simplified models. The highest deposition fluxes were measured at Novaggio (Southern Switzerland), exposed to heavy air pollution originating from the Po Plain, with throughfall fluxes averaging 29 kg ha(-1) a(-1) for N and 15 kg ha(-1) a(-1) for S. Low deposition fluxes were measured on the plots above 1800 m, with throughfall fluxes lower than 4.5 kg ha(-1) a(-1) for N and lower than 3 kg ha(-1) a(-1) for S. The wet deposition of N and S derived from bulk deposition was close to the modeled wet deposition, but the dry deposition derived from throughfall was significantly lower than the modeled dry deposition for both compounds. However, both the throughfall method and the model yielded total deposition estimates of N which exceeded the critical loads calculated on the basis of long-term mass balance considerations. These estimates were within or above the range of empirical critical loads except above 1800 m.
منابع مشابه
Atmospheric deposition and ozone levels in Swiss forests: are critical values exceeded?
Air pollution affects forest health through atmospheric deposition of acidic and nitrogen compounds and elevated levels of tropospheric ozone (O3). In 1985, a monitoring network was established across Europe and various research efforts have since been undertaken to define critical values. We measured atmospheric deposition of acidity and nitrogen as well as ambient levels of O3 on 12, 13, and ...
متن کاملMichopoulos P (2011). Effects of increasing CO2 on trees and intensively monitored plots: research needs in view of future ecosystem studies. iForest 4: 172-175
Introduction There is a growing increase in the impact of elevated atmospheric CO2 on forest trees and forest ecosystems. This is not surprising as forests cover some 27% of the total land surface but account for some 70% of ter restrial net primary production (Melillo et al. 1993). Moreover, more than 85% of the total plant C on earth and between 60-70% of the total soil C is contained in for...
متن کاملAnthropogenic N deposition and the fate of NO 3 in a northern hardwood ecosystem
Human activity has substantially increased atmospheric NO 3 deposition in many regions of the Earth, which could lead to the N saturation of terrestrial ecosystems. Sugar maple (Acer saccharum Marsh.) dominated northern hardwood forests in the Upper Great Lakes region may be particularly sensitive to chronic NO 3 deposition, because relatively moderate experimental increases (three times ambien...
متن کاملImpacts of elevated atmospheric CO(2) on forest trees and forest ecosystems: knowledge gaps.
Atmospheric CO(2) is rising rapidly, and options for slowing the CO(2) rise are politically charged as they largely require reductions in industrial CO(2) emissions for most developed countries. As forests cover some 43% of the Earth's surface, account for some 70% of terrestrial net primary production (NPP), and are being bartered for carbon mitigation, it is critically important that we conti...
متن کاملCombined effect of atmospheric nitrogen deposition and climate change on temperate forest soil biogeochemistry: A modeling approach
Atmospheric N deposition is known to severely impact forest ecosystem functioning by influencing soil biogeochemistry and nutrient balance, and consequently tree growth and overall forest health and biodiversity. Moreover, because climate greatly influences soil processes, climate change and atmospheric N deposition must both be taken into account when analysing the evolution of forest ecosyste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental monitoring and assessment
دوره 104 1-3 شماره
صفحات -
تاریخ انتشار 2005